Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Topics in Antiviral Medicine ; 31(2):113, 2023.
Artículo en Inglés | EMBASE | ID: covidwho-2320759

RESUMEN

Background: The COVID-19 pandemic has been striking for three years and, despite the regular arise of new variants, populations are now widely immune and protected from severe symptoms. However, immunocompromised patients still have worse clinical outcomes, higher mortality and rarely develop effective immunity through vaccination or infection. Here, we studied the temporal distribution of infections, viral loads (VL) as well as the viral genetic diversity among an immunocompromised patient cohort, between January 2021 and September 2022. Method(s): Overall, 478 immunocompromised patients (solid organ transplant, HIV positive, cancer, autoimmune disease) and 234 controls (healthcare workers) from Pitie-Salpetriere and Bichat Claude-Bernard University hospitals (Paris, FRANCE) were diagnosed with SARS-CoV-2 infection by RT-qPCR. Whole genome sequencing was performed according to ARTIC protocol on Oxford Nanopore platform. All 712 full viral genomes were used to determine lineages and mapped to Wuhan-Hu-1 reference to produce a maximum likelihood phylogenetic tree (IQTree, 1000 bootstraps). Differences in temporal distributions of infections and VL were assessed using nonparametric statistical tests. Result(s): According to phylogenetic analysis, genomes from SARS-CoV- 2 infecting immunocompromised patients and those infecting healthy individuals are distributed in a similar way. No significant genetic differences can be observed between viral genomes from patients and controls within the different lineages. Temporal distribution of COVID-19 infections were also similar between immunocompromised patients and controls, with the exception of BA.2 variant for which controls were infected earlier (p< 0.001). VL were significantly lower in immunocompromised patients infected with Omicron variants (p=0.04). No differences in VL were observed for Alpha and Delta variants. Conclusion(s): At diagnosis, no intrinsic genetic divergence was observed in virus infecting immunocompromised patients compared to those circulating in the general population. Similarities in temporal distribution of infections between controls and patients suggest that these different groups become infected concomitantly. VL appeared to be lower for Omicron variants in immunocompromised patients. An earlier VL peak of Omicron and a testing of immunocompromised patients hospitalized once severe symptoms have appeared could indicate a delayed testing in these patients, once the replicative phase over. (Figure Presented).

2.
Topics in Antiviral Medicine ; 31(2):140, 2023.
Artículo en Inglés | EMBASE | ID: covidwho-2313806

RESUMEN

Background: Immunocompromised hosts with prolonged SARS-CoV-2 infections have been associated with the emergence of novel mutations, especially in the Spike protein, a key target for vaccines and therapeutics. Here, we conducted a case-control study to measure the genetic diversity of SARSCoV- 2 and to search for immunocompromised-specific minority variants. Method(s): SARS-CoV-2-positive patients with lung/cardiac/kidney transplant, HIV-positive, or treated with high doses of corticosteroids for auto-immune diseases were considered as immunocompromised hosts. SARS-CoV-2-positive healthcare workers with no auto-immune disease were used as controls. Samples were analyzed by RT-qPCR at Pitie-Salpetriere and Bichat Claude-Bernard university hospitals (Paris, France). Samples with Cycle threshold < 30 were selected for SARSCoV- 2 whole-genome sequencing using Oxford Nanopore protocol. Raw sequence data were mapped onto the Wuhan-Hu-1 reference genome, and consensus sequences were produced to determine the lineage. Only sequences covering at least 95% at >=50X depth of the Spike gene were investigated. In-house algorithms were developed to identify all majority and minority mutations in Spike. We defined a minority variant when it was present in >=6% and < 50% of the reads;and a majority variant when it was present in >50%. Result(s): We sequenced SARS-CoV-2 genome from 478 COVID-19- positive immunocompromised patients and 234 controls. More minority non-synonymous mutations in Spike were detected in viruses from immunocompromised hosts, compared to viral genomes from controls, in both Delta (p=0.001) and Omicron (p< 0.001) lineages, but not in Alpha (p=0.66) (Figure 1). Interestingly, among the 52 patients infected with the Delta variant, we concomitantly detected at low frequencies the mutations H655Y, N764K, D796Y, in three patients (associated with different auto-immune disease), that are part of Omicron variants signature mutations. Similarly, some patients (n=7) infected by Omicron BA.1 lineage had R346T at low-frequency, later fixed in Omicron BA.4.6 and BQ.1.1 lineages. None of these mutations were observed in the viral genomes from controls. Conclusion(s): Here, we report a higher genetic diversity in Spike gene among SARS-CoV-2 sequences from immunocompromised hosts for Delta and Omicron lineages. These results suggest that immunocompromised patients are more likely to allow viral genetic diversification and are associated with a risk of emergence of novel SARS-CoV-2 variants. (Figure Presented).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA